Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 151
1.
Analyst ; 149(10): 3008-3016, 2024 May 13.
Article En | MEDLINE | ID: mdl-38606455

Fast-scan cyclic voltammetry (FSCV) is a widely used technique for detecting neurotransmitters. However, electrode fouling can negatively impact its accuracy and sensitivity. Fouling refers to the accumulation of unwanted materials on the electrode surface, which can alter its electrochemical properties and reduce its sensitivity and selectivity. Fouling mechanisms can be broad and may include biofouling, the accumulation of biomolecules on the electrode surface, and chemical fouling, the deposition of unwanted chemical species. Despite individual studies discussing fouling effects on either the working electrode or the reference electrode, no comprehensive study has been conducted to compare the overall fouling effects on both electrodes in the context of FSCV. Here, we examined the effects of biofouling and chemical fouling on the carbon fiber micro-electrode (CFME) as the working electrode and the Ag/AgCl reference electrode with FSCV. Both fouling mechanisms significantly decreased the sensitivity and caused peak voltage shifts in the FSCV signal with the CFME, but not with the Ag/AgCl reference electrode. Interestingly, previous studies have reported peak voltage shifts in FSCV signals due to the fouling of Ag/AgCl electrodes after implantation in the brain. We noticed in a previous study that energy-dispersive spectroscopy (EDS) spectra showed increased sulfide ion concentration after implantation. We hypothesized that sulfide ions may be responsible for the peak voltage shift. To test this hypothesis, we added sulfide ions to the buffer solution, which decreased the open circuit potential of the Ag/AgCl electrode and caused a peak voltage shift in the FSCV voltammograms. Also, EDS analysis showed that sulfide ion concentration increased on the surface of the Ag/AgCl electrodes after 3 weeks of chronic implantation, necessitating consideration of sulfide ions as the fouling agent for the reference electrodes. Overall, our study provides important insights into the mechanisms of electrode fouling and its impact on FSCV measurements. These findings could inform the design of FSCV experiments, with the development of new strategies for improving the accuracy and reliability of FSCV measurements in vivo.


Biofouling , Electrochemical Techniques , Neurotransmitter Agents , Neurotransmitter Agents/analysis , Biofouling/prevention & control , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Animals , Silver Compounds/chemistry , Carbon Fiber/chemistry , Microelectrodes , Sulfides/chemistry , Electrodes
2.
J Indian Prosthodont Soc ; 24(2): 196-200, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38650345

BACKGROUND: In-office three-dimensional (3D) printers and metal sleeveless surgical guides are becoming a major trend recently. However, metal sleeve-free designs are reported to be more prone to distortion which might lead to variation in the inner diameter of the drill hole and cause deviation and inaccuracy in the placement of the implant. Carbon fiber nanoparticles are reported to improve the properties of 3D printing resin material in industrial application. AIM: The purpose of the study is to evaluate and compare the wear resistance of 3D-printed implant guides with metal sleeve, sleeve-free, and reinforced sleeve-free resin to the guide drill. MATERIALS AND METHODS: A total of 66 samples with 22 samples in each group. Three groups including 3D-printed surgical guide with metal sleeve (Group A), without metal sleeve (Group B), an carbon fiber reinforced without metal sleeve (Group C) were included in the study. All samples were evaluated before sequential drilling and after sequential drilling using Vision Measuring Machine. The data were tabulated and statistically evaluated. RESULTS: The data obtained were statistically analyzed with one-way analysis of variance and posthoc test. The data obtained for wear observed in the samples showed that the wear was highest in Group B with a mean of 0.5036 ± 0.1118 and the least was observed in Group A with a mean of 0.0228 ± 0.0154 and Group C was almost similar to Group A with mean of 0.0710 ± 0.0381. The results showed there was a significant difference between Group B with Group A and C, respectively (P < 0.05). The results showed that there was no significant difference regarding the wear observed between Groups A and C (P > 0.05). CONCLUSION: The wear observed in the guide with a metal sleeve and carbon fiber reinforced without a metal sleeve was almost similar. The carbon fiber-reinforced guide showed better tolerance to guide drill equivalent to metal sleeve. Thus, carbon fiber nanoparticles reinforced in 3D printing resin have shown improved strength and can be used as a good replacement for a metal sleeve for an accurate placement of the implant.


Printing, Three-Dimensional , Materials Testing/methods , In Vitro Techniques , Metals/chemistry , Carbon Fiber/chemistry , Resins, Synthetic/chemistry , Humans , Dental Implants
3.
Article En | MEDLINE | ID: mdl-38640791

Drug-impaired driving poses a significant risk of collisions and other hazardous accidents, emphasizing the urgent need for simple and rapid roadside detection methods. Oral fluid, as an easily collectible and non-invasive test material, has gained widespread use in detecting drug-impaired driving. In this study, we have devised a method for direct sampling using a carbon fiber bundle combined with flame ionization mass spectrometry. The essence of this method lies in the synergy between the adsorption properties of carbon fiber and the plasma characteristics of the flame. Leveraging the strong adsorption capabilities of the carbon fiber bundle allows for the use of a minimal sample size (<100 µL) during sampling, presenting a distinct advantage in the roadside inspection and sampling process. Throughout the flame ionization process, proteins and salts within the oral fluid matrix adhere well to the carbon fiber bundle, while small molecule targets can be efficiently desorbed and react with charged species in the flame, leading to ionization. The results demonstrate the successful development of carbon fiber-sampling combined flame ionization mass spectrometry, capable of qualitative and quantitative analysis of drugs in oral fluid without the need for sample pre-treatment. Its quantitative capabilities are sufficient for real sample detection, providing an effective analytical method for the roadside detection of drugs in oral fluids.


Carbon Fiber , Saliva , Humans , Carbon Fiber/chemistry , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry , Saliva/chemistry , Limit of Detection , Mass Spectrometry/methods , Reproducibility of Results , Flame Ionization/methods , Linear Models
4.
Biomed Mater ; 19(4)2024 May 10.
Article En | MEDLINE | ID: mdl-38688325

Bone fracture plates are usually made from steel or titanium, which are much stiffer than cortical bone. This may cause bone 'stress shielding' (i.e. bone resorption leading to plate loosening) and delayed fracture healing (i.e. fracture motion is less than needed to stimulate callus formation at the fracture). Thus, the authors previously designed, fabricated, and mechanically tested novel 'hybrid' composites made from inorganic and organic materials as potential bone fracture plates that are more flexible to reduce these negative effects. This is the first study to measure the cytotoxicity of these composites via the survival of rat cells. Cubes of carbon fiber/flax fiber/epoxy and glass fiber/flax fiber/epoxy had better cell survival vs. Kevlar fiber/flax fiber/epoxy (57% and 58% vs. 50%). Layers and powders made of carbon fiber/epoxy and glass fiber/epoxy had higher cell survival than Kevlar fiber/epoxy (96%-100% and 100% vs. 39%-90%). The presence of flax fibers usually decreased cell survival. Thus, carbon and glass fiber composites (with or without flax fibers), but not Kevlar fiber composites (with or without flax fibers), may potentially be used for bone fracture plates.


Bone Plates , Carbon Fiber , Cell Survival , Fractures, Bone , Glass , Materials Testing , Animals , Rats , Cell Survival/drug effects , Glass/chemistry , Carbon Fiber/chemistry , Biocompatible Materials/chemistry , Carbon/chemistry , Fracture Healing , Epoxy Resins/chemistry , Stress, Mechanical , Titanium/chemistry
5.
Acta Biomater ; 180: 128-139, 2024 May.
Article En | MEDLINE | ID: mdl-38636789

Titanium as the leading implant material in locked plating is challenged by polymers such as carbon fiber-reinforced polyetheretherketone (CFR-PEEK), which became the focus of interest of researchers and manufacturers in recent years. However, data on human tissue response to these new implant materials are rare. Osteosynthesis plates and peri­implant soft tissue samples of 16 healed proximal humerus fractures were examined (n = 8 CFR-PEEK, n = 8 titanium). Soft tissue was analyzed by immunohistochemistry and µCT. The entrapped foreign bodies were further examined for their material composition by FTIR. To gain insight into their origin and formation mechanism, explanted and new plates were evaluated by SEM, EDX, profilometry and HR-CT. In the peri­implant soft tissue of the CFR-PEEK plates, an inflammatory tissue reaction was detected. Tissues contained foreign bodies, which could be identified as tantalum wires, carbon fiber fragments and PEEK particles. Titanium particles were also found in the peri­implant soft tissue of the titanium plates but showed a less intense surrounding tissue inflammation in immunohistochemistry. The surface of explanted CFR-PEEK plates was rougher and showed exposed and broken carbon fibers as well as protruding and deformed tantalum wires, especially in used screw holes, whereas scratches were identified on the titanium plate surfaces. Particles were present in the peri­implant soft tissue neighboring both implant materials and could be clearly assigned to the plate material. Particles from both plate materials caused detectable tissue inflammation, with more inflammatory cells found in soft tissue over CFR-PEEK plates than over titanium plates. STATEMENT OF SIGNIFICANCE: Osteosynthesis plates are ubiquitously used in various medical specialties for the reconstruction of bone fractures and defects and are therefore indispensable for trauma surgeons, ENT specialists and many others. The leading implant material are metals such as titanium, but recently implants made of polymers such as carbon fiber-reinforced polyetheretherketone (CFR-PEEK) have become increasingly popular. However, little is known about human tissue reaction and particle generation related to these new implant types. To clarify this question, 16 osteosynthesis plates (n = 8 titanium and n = 8 CFR-PEEK) and the overlying soft tissue were analyzed regarding particle occurrence and tissue inflammation. Tissue inflammation is clinically relevant for the development of scar tissue, which is discussed to cause movement restrictions and thus contributes significantly to patient outcome.


Benzophenones , Bone Plates , Carbon Fiber , Carbon , Inflammation , Ketones , Polyethylene Glycols , Polymers , Titanium , Humans , Ketones/chemistry , Titanium/chemistry , Titanium/adverse effects , Polyethylene Glycols/chemistry , Polymers/chemistry , Carbon Fiber/chemistry , Carbon/chemistry , Male , Inflammation/pathology , Female , Middle Aged , Aged , Adult
6.
Biosens Bioelectron ; 257: 116332, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38677016

In situ detection of dopamine (DA) at single-cell level is critical for exploring neurotransmitter-related biological processes and diseases. However, the low content of DA and a variety of distractors with similar oxidation potentials as DA in cells brought great challenges. Here, a sensitive and specific electrochemical nanosensor was proposed for in situ detection of DA in single living cells based on nanodiamond (ND) and molecularly imprinted polymer (MIP)-functionalized carbon fiber nanoelectrode (ND/MIP/CFNE). Due to its excellent electrocatalytic property, ND was modified to the surface of CFNE based on amide bonding. Compared with bare CFNE, ND-modified CFNE can enhance oxidation currents of DA by about 4-fold, improving signal-to-noise ratio and detection sensitivity. MIP was further electropolymerized on the surface of nanoelectrodes to achieve specific capture and recognition of DA, which could avoid the interference of complex matrix and analogs in cells. Taking advantage of the precise positioning capability of a single-cell analyzer and micromanipulator, ND/MIP/CFNE could be precisely inserted into different locations of single cells and monitor oxidation signal of DA. The concentration of DA in the cytoplasm of single pheochromocytoma (PC12) cell was measured to be about 0.4 µM, providing a sensitive and powerful method for single-cell detection. Furthermore, the nanoelectrodes can monitor the fluctuation of intracellular DA under drug stimulation, providing new ideas and methods for new drug development and efficacy evaluation.


Biosensing Techniques , Dopamine , Electrochemical Techniques , Molecularly Imprinted Polymers , Single-Cell Analysis , Dopamine/analysis , Dopamine/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , PC12 Cells , Electrochemical Techniques/methods , Molecularly Imprinted Polymers/chemistry , Animals , Rats , Nanodiamonds/chemistry , Electrodes , Carbon Fiber/chemistry , Molecular Imprinting/methods , Limit of Detection , Polymers/chemistry
7.
Environ Res ; 249: 118254, 2024 May 15.
Article En | MEDLINE | ID: mdl-38301762

The electro-Fenton (EF) based on gas-diffusion electrodes (GDEs) reveals promising application prospective towards recalcitrant organics degradation because such GDEs often yields superior H2O2 generation efficiency and selectivity. However, the low efficiency of Fe2+/Fe3+ cycle with GDEs is always considered to be the limiting step for the EF process. In this study, activated carbon fiber (ACF) was firstly employed as co-catalyst to facilitate the performance of antibiotic cefaclor (CEC) decomposition in EF process. It was found that the addition of ACF co-catalyst achieved a rapid Fe2+/Fe3+ cycling, which significantly enhanced Fenton's reaction and hydroxyl radicals (•OH) generation. X-ray photoelectron spectroscopy (XPS) results indicated that the functional groups on ACF surface are related to the conversion of Fe3+ into Fe2+. Moreover, DMSO probing experiment confirmed the enhanced •OH production in EF + ACF system compared to conventional EF system. When inactive BDD and Ti4O7/Ti anodes were paired to EF system, the addition of ACF could significantly improve mineralization degree. However, a large amount of toxic byproducts, including chlorate (ClO3-) and perchlorate (ClO4-), were generated in these EF processes, especially for BDD anode, due to their robust oxidation capacity. Higher mineralization efficiency and less toxic ClO4- generation were obtained in the EF + ACF process with Ti4O7/Ti anode. This presents a novel alternative for efficient chloride-containing organic removal during wastewater remediation.


Anti-Bacterial Agents , Carbon Fiber , Cefaclor , Electrodes , Hydrogen Peroxide , Iron , Water Pollutants, Chemical , Carbon Fiber/chemistry , Anti-Bacterial Agents/chemistry , Hydrogen Peroxide/chemistry , Water Pollutants, Chemical/chemistry , Iron/chemistry , Cefaclor/chemistry , Catalysis , Charcoal/chemistry , Electrochemical Techniques/methods
8.
J Neurosci Methods ; 404: 110077, 2024 04.
Article En | MEDLINE | ID: mdl-38336092

BACKGROUND: To study neural control of behavior, intracellular recording and stimulation of many neurons in freely moving animals would be ideal. However, current technologies limit the number of neurons that can be monitored and manipulated. A new technology has become available for intracellular recording and stimulation which we demonstrate in the tractable nervous system of Aplysia. NEW METHOD: Carbon fiber electrode arrays (whose tips are coated with platinum-iridium) were used with an in vitro feeding preparation to intracellularly record from and to control the activity of multiple neurons during feeding movements. RESULTS: In an in vitro feeding preparation, the carbon fiber electrode arrays recorded action potentials and subthreshold synaptic potentials during feeding movements. Depolarizing or hyperpolarizing currents activated or inhibited identified neurons (respectively), manipulating the movements of the feeding apparatus. COMPARISON WITH EXISTING METHOD(S): Standard glass microelectrodes that are commonly used for intracellular recording are stiff, liable to break in response to movement, and require many micromanipulators to be precisely positioned. In contrast, carbon fiber arrays are less sensitive to movement, but are capable of multiple channels of intracellular recording and stimulation. CONCLUSIONS: Carbon fiber arrays are a novel technology for intracellular recording that can be used in moving preparations. They can record both action potentials and synaptic activity in multiple neurons and can be used to stimulate multiple neurons in complex patterns.


Aplysia , Neurons , Animals , Carbon Fiber/chemistry , Aplysia/physiology , Neurons/physiology , Microelectrodes , Action Potentials/physiology
9.
Int J Biol Macromol ; 260(Pt 1): 129457, 2024 Mar.
Article En | MEDLINE | ID: mdl-38232869

The chemical inertness of the carbon fiber (CF) surface results in suboptimal mechanical properties of the prepared composites. To address this issue, we employed a combination of tannic acid and 3-aminopropyltriethoxysilane mixture (TA-APTES) grafted sodium alginate (SA) as a medium to enhance the interfacial properties of composites through the growth of ZnO nanoparticles on CF surfaces. ZnO nanolayers with rod-like and flower-like structures were obtained by adjusting the pH of the reaction system (pH = 10 and 12, respectively). Characterization results show that in comparison with the untreated CF composites, in the flexural strength, flexural modulus, interlaminar shear strength (ILSS) and interfacial shear strength (IFSS) of the as-prepared CF/TA-APTES/SA/ZnO10 (nanorods) composites were improved by 40.8 %, 58.4 %, 44.9 % and 47.8 %, respectively. The prepared CF/TA-APTES/SA/ZnO12 (nanoflowers) composite showed an increase in flexural strength, flexural modulus, ILSS and IFSS by 39.8 %, 63.6 %, 47.3 % and 48.2 %, respectively. These positive results indicate that the ZnO nanolayers increase the interfacial phase area and fiber surface roughness, thereby enhancing mechanical interlocking and load transfer between the fibers and resin matrix. This work provides a novel interfacial modification method for preparing CF composites used in longer and more durable wind turbine blades.


Polyphenols , Zinc Oxide , Carbon Fiber/chemistry , Materials Testing , Surface Properties , Composite Resins/chemistry
10.
Biosens Bioelectron ; 250: 116087, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38295583

Dopamine (DA), a catecholamine neurotransmitter, is crucial in brain signal transmission. Monitoring cytoplasmic DA levels can reflect changes in metabolic factors and provide valuable information for researching the mechanisms involved in neurodegenerative diseases. However, the in-situ detection of intracellular DA is constrained by its low contents in small-sized single cells. In this work, we report that noble metal (Au, Pt)-modified carbon fiber micro-nanoelectrodes are capable of real-time detection of DA in single cells with excellent sensitivity, selectivity, and anti-contamination capabilities. Notably, noble metals can be modified on the electrode surface through electrochemical deposition to enhance the conductivity of the electrode and the oxidation current of DA by 50 %. The nanosensors can work stably and continuously in rat adrenal pheochromocytoma cells (PC12) to monitor changes in DA levels upon K+ stimulation. The functionalized carbon fibers based nanosensors will provide excellent prospects for DA analysis in the brains of living animals.


Biosensing Techniques , Dopamine , Rats , Animals , Dopamine/chemistry , Carbon Fiber/chemistry , Electrochemical Techniques , Electrodes , Metals , Carbon/chemistry
11.
J Chromatogr A ; 1698: 463999, 2023 Jun 07.
Article En | MEDLINE | ID: mdl-37087857

This study deals with the development of an inexpensive and single-step sorbent manufacturing methodology for the analysis of air pollutants. Disposable carbon fibre sorbents were prepared in a few minutes using the electrothermal conditioning technique. The sorbent conditioning current and time were optimised to obtain the best extraction of benzene, toluene, ethylbenzene and xylenes (BTEX) from the air samples. After sorbent characterisation, analysis parameters affecting the BTEX extraction efficiency, such as sampling volume, humidity and sampling flow rate, were optimised for active BTEX sampling. Under optimum conditions, validation parameters such as the limit of detection (LOD), repeatability, reproducibility, and linear range were found to be 0.07-0.11 mg m - 3, 1.1%-1.8%, 5.6%-9.5% and 0.24-45 mg m - 3, respectively. Thereafter, the BTEX analysis was successfully conducted using the proposed method, with acceptable recovery values (96%-103%) in the real indoor environments.


Air Pollutants , Electrochemical Techniques , Air Pollutants/analysis , Air Pollutants/chemistry , Electrochemical Techniques/methods , Volatilization , Carbon Fiber/chemistry , Carbon Fiber/ultrastructure , Spectroscopy, Fourier Transform Infrared , Temperature , Microscopy, Electron, Scanning
12.
Article En | MEDLINE | ID: mdl-36901583

In this study, MIL-53(Fe) was innovatively incorporated into carbon felt (CF) by growing in-situ using the solvothermal method. MIL-53(Fe)@carbon felt (MIL-53(Fe)@CF) was prepared and used for the degradation of rhodamine B (RhB). As a new photocatalytic membrane, MIL-53(Fe)@CF photocatalytic membrane has the characteristics of high degradation efficiency and recyclability. Influence of various parameters including MIL-53(Fe)@CF loading, light, electron trapper type, and starting pH on RhB degradation were investigated. The morphology, structure, and degradation properties of MIL-53(Fe)@CF photocatalytic membrane were characterized. Corresponding reaction mechanisms were explored. The results indicated that pH at 4.5 and 1 mmol/L H2O2, 150 mg MIL-53(Fe)@CF could photocatalytically degrade 1 mg/L RhB by 98.8% within 120 min, and the reaction rate constant (k) could reach 0.03635 min-1. The clearance rate of RhB decreased by only 2.8% after three operations. MIL-53(Fe)@CF photocatalytic membrane was found to be stable.


Carbon Fiber , Rhodamines , Carbon , Carbon Fiber/chemistry , Hydrogen Peroxide/chemistry , Rhodamines/chemistry , Photochemical Processes
13.
ACS Appl Bio Mater ; 6(2): 874-882, 2023 02 20.
Article En | MEDLINE | ID: mdl-36753612

Carbon fiber composites are promising candidates for orthopedic implant applications, which calls for a combination of high mechanical strength and outstanding biotribological properties. In this work, hydroxyapatite nanobelts-carbon nanotubes (HN) were designed and constructed into carbon fiber-anhydrous dicalcium phosphate (DCPA)-epoxy composites (CDE) for simultaneously optimizing the mechanical and biotribological properties via the combined methods of pulse electrochemical deposition and injected chemical vapor deposition. HN provides more nucleation sites for the growth of DCPA and favors the infiltration of epoxy. In addition, HN optimizes the fiber/matrix interface by generating strong interfacial mechanical interlocking. Owing to the synergism of a strongly bound HN, the mechanical and biotribological properties of CDE have demonstrated significant improvement. The tensile strength and elastic modulus of HN-modified CDE (HN-CDE) increase by 52 and 170% compared with CDE, respectively. The wear rate and average friction coefficient of HN-CDE are decreased by 42% and increased by 45% compared with those of CDE, respectively. HN-CDE, with superior mechanical strength and biotribological properties, has high potential as a bone substitute and orthopedic implant.


Durapatite , Nanotubes, Carbon , Durapatite/chemistry , Carbon Fiber/chemistry , Nanotubes, Carbon/chemistry , Tensile Strength
14.
Macromol Rapid Commun ; 44(4): e2200738, 2023 Feb.
Article En | MEDLINE | ID: mdl-36494320

Owing to their excellent physical and chemical properties, the carbon fibre reinforced poly(ether-ether-ketone) composites (CF/PEEK) are widely used in aerospace applications such as rockets, missiles, and high-speed vehicles. However, both carbon fibre (CF) and poly(ether-ether-ketone) (PEEK) have inert molecular chain structures, which seriously affect the interfacial properties of CF/PEEK composites. In this study, to improve the properties of CF/PEEK composites, carboxylated PEEK (PEEK-COOH) with different carboxylation degrees is synthesized as the sizing agent by a "two-step" method. Then, the activated CF surface is coated by PEEK-COOH sizing layers with different functionalization degrees to prepare the CF/PEEK composites. The results show that the interfacial properties of CF/PEEK composites are improved after applying the sizing agent. When the carboxylation degree of PEEK-COOH is 19.61%, the flexural strength, flexural modulus, and interlaminar shear strength (ILSS) of CF/PEEK composites reach 489.34 MPa, 25.387 GPa, and 81.3 MPa, respectively. In addition, the use of PEEK-COOH sizing agents can form an excellent transition layer between CF and PEEK, creating an efficient stress transfer system and facilitating an even stress distribution between CF and PEEK. Furthermore, the main mechanism of material fracture changes from CF debonding to CF and resin fracture.


Ketones , Polymers , Carbon Fiber/chemistry , Materials Testing , Polymers/chemistry , Ketones/chemistry
15.
Skeletal Radiol ; 52(3): 393-404, 2023 Mar.
Article En | MEDLINE | ID: mdl-35536358

Carbon-fiber-reinforced polyetheretherketone (CFR-PEEK) orthopedic implants are gaining popularity in oncologic applications as they offer many potential advantages over traditional metallic implants. From an imaging perspective, this instrumentation allows for improved evaluation of adjacent anatomic structures during radiography, computed tomography (CT), and magnetic resonance imaging (MRI). This results in improved postoperative surveillance imaging quality as well as easier visualization of anatomy for potential image-guided percutaneous interventions (e.g., pain palliation injections, or ablative procedures for local disease control). CFR-PEEK devices are also advantageous in radiation oncology treatment due to their decreased imaging artifact during treatment planning imaging and decreased dose perturbation during radiotherapy delivery. As manufacturing processes for CFR-PEEK materials continue to evolve and improve, potential orthopedic applications in the spine and appendicular skeleton increase. An understanding of the unique properties of CFR-PEEK devices and their impact on imaging is valuable to radiologists delivering care to orthopedic oncology patients in both the diagnostic and interventional settings. This multidisciplinary review aims to provide a comprehensive insight into the radiologic, surgical, and radiation oncology impact of these innovative devices.


Spinal Neoplasms , Humans , Carbon Fiber/chemistry , Spinal Neoplasms/surgery , Polymers , Benzophenones , Polyethylene Glycols/chemistry , Ketones/chemistry , Carbon/chemistry
16.
Anal Chem ; 94(11): 4803-4812, 2022 03 22.
Article En | MEDLINE | ID: mdl-35274933

Here, we have synthesized and characterized graphene-fiber microelectrodes (GFME's) for subsecond detection of neurochemicals with fast-scan cyclic voltammetry (FSCV) for the first time. GFME's exhibited extraordinary properties including faster electron transfer kinetics, significantly improved sensitivity, and ease of tunability that we anticipate will have major impacts on neurochemical detection for years to come. GF's have been used in the literature for various applications; however, scaling their size down to microelectrodes and implementing them as neurochemical microsensors is significantly less developed. The GF's developed in this paper were on average 20-30 µm in diameter and both graphene oxide (GO) and reduced graphene oxide (rGO) fibers were characterized with FSCV. Neat GF's were synthesized using a one-step dimension-confined hydrothermal strategy. FSCV detection has traditionally used carbon-fiber microelectrodes (CFME's) and more recently carbon nanotube fiber electrodes; however, uniform functionalization and direct control of the 3D surface structure of these materials remain limited. The expansion to GFME's will certainly open new avenues for fine-tuning the electrode surface for specific electrochemical detection. When comparing to traditional CFME's, our GFME's exhibited significant increases in electron transfer, redox cycling, fouling resistance, higher sensitivity, and frequency independent behavior which demonstrates their incredible utility as biological sensors.


Graphite , Nanotubes, Carbon , Carbon Fiber/chemistry , Dopamine/chemistry , Microelectrodes , Nanotubes, Carbon/chemistry
17.
Sci Rep ; 12(1): 2607, 2022 02 16.
Article En | MEDLINE | ID: mdl-35173195

This work presents the structural characterisation of carbon fibres obtained from the carbonization of flax tow at 400°C (CFs400°C) and 1000°C (CFs1000°C) and the thermodynamic and kinetic studies of adsorption of Doxorubicin (Dox) on the fibres. The characteristic of carbon fibres and their drug adsorption and removal mechanism were investigated and compared with that of natural flax tow. All fibres were fully characterized by scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), specific surface area analysis and Boehm titration. The results demonstrated the highest adsorption properties of CFs400°C at 323 K (qmax = 275 mg g-1). The kinetic data followed the pseudo-second-order kinetic model more closely, whereas the Dubinin-Radushkevich model suitably described isotherms for all fibres. Calculated parameters revealed that the adsorption process of Dox ions is spontaneous and mainly followed by physisorption and a pore-filling mechanism. The removal efficiency for carbon fibres is low due to the effect of pore-blocking and hydrophobic hydration. However, presented fibres can be treated with a base for further chemical surface modification, increasing the adsorption capacity and controlling the release tendency.


Bone and Bones , Carbon Fiber , Doxorubicin , Flax/chemistry , Nanostructures , Nanotechnology/methods , Prostheses and Implants , Tissue Scaffolds , Adsorption , Carbon Fiber/chemistry , Drug Liberation , Hot Temperature , Kinetics , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Thermodynamics
18.
Molecules ; 27(2)2022 Jan 14.
Article En | MEDLINE | ID: mdl-35056837

Direct in vivo measurements of neurometabolic markers in the brain with high spatio-temporal resolution, sensitivity, and selectivity is highly important to understand neurometabolism. Electrochemical biosensors based on microelectrodes are very attractive analytical tools for continuous monitoring of neurometabolic markers, such as lactate and glucose in the brain extracellular space at resting and following neuronal activation. Here, we assess the merits of a platinized carbon fiber microelectrode (CFM/Pt) as a sensing platform for developing enzyme oxidase-based microbiosensors to measure extracellular lactate in the brain. Lactate oxidase was immobilized on the CFM/Pt surface by crosslinking with glutaraldehyde. The CFM/Pt-based lactate microbiosensor exhibited high sensitivity and selectivity, good operational stability, and low dependence on oxygen, temperature, and pH. An array consisting of a glucose and lactate microbiosensors, including a null sensor, was used for concurrent measurement of both neurometabolic substrates in vivo in the anesthetized rat brain. Rapid changes of lactate and glucose were observed in the cortex and hippocampus in response to local glucose and lactate application and upon insulin-induced fluctuations of systemic glucose. Overall, these results indicate that microbiosensors are a valuable tool to investigate neurometabolism and to better understand the role of major neurometabolic markers, such as lactate and glucose.


Biosensing Techniques/instrumentation , Brain/metabolism , Glucose/analysis , Lactic Acid/analysis , Mixed Function Oxygenases/metabolism , Animals , Carbon Fiber/chemistry , Electrochemical Techniques , Enzymes, Immobilized/metabolism , Glucose/metabolism , Lactic Acid/metabolism , Male , Microelectrodes , Rats , Rats, Wistar
19.
Toxicology ; 466: 153063, 2022 01 30.
Article En | MEDLINE | ID: mdl-34890706

Submicron-diameter carbon fibers (SCFs) are a type of fine-diameter fibrous carbon material that can be used in various applications. To accelerate their practical application, a hazard assessment of SCFs must be undertaken. This study demonstrated the pulmonary toxicity, cytotoxicity, and genotoxicity of three types of SCFs with different diameters and lengths. The average diameter and length of SCFs were 259.2 nm and 11.7 µm in SCF1 suspensions, 248.5 nm and 6.7 µm in SCF2 suspensions, and 183.0 nm and 13.7 µm in SCF3 suspensions, respectively. The results of pulmonary inflammation and recovery following intratracheal instillation with SCFs at doses of 0.25, 0.5, or 1.0 mg/kg showed that the pulmonary toxicity of SCFs was SCF3 > SCF1 > SCF2. These results suggest that SCF diameter and length are most likely important contributing factors associated with lung SCF clearance, pulmonary inflammation, and recovery. Furthermore, SCFs are less pulmonary toxic than bent multi-walled carbon nanotubes. Cell viability, pro-inflammatory cytokine and intracellular reactive oxygen species productions, morphological changes, gene expression profiling in NR8383 rat alveolar macrophage cells showed that the cytotoxic potency of SCFs is: SCF3 > SCF1 > SCF2. These results showed that SCFs with small diameters had high cytotoxicity, and SCFs with short lengths had low cytotoxicity. We conclude that pulmonary toxicity and cytotoxicity are associated with the diameter and length distributions of SCFs. In addition, a standard battery for genotoxicity testing, namely the Ames test, an in vitro chromosomal aberration test, and a mammalian erythrocyte micronucleus test, demonstrated that the three types of SCFs did not induce genotoxicity. Our findings provide new evidence for evaluating the potential toxicity of not only SCFs used in this study but also various SCFs which differ depending on the manufacturing processes or physicochemical properties.


Carbon Fiber/toxicity , Lung/drug effects , Macrophages, Alveolar/drug effects , Nanotubes, Carbon/toxicity , Pneumonia/metabolism , Reactive Oxygen Species/metabolism , Transcriptome/drug effects , Animals , Carbon Fiber/chemistry , Cell Survival/drug effects , Cytokines/metabolism , Male , Mutagenicity Tests , Nanotubes, Carbon/chemistry , Oligonucleotide Array Sequence Analysis , Particle Size , Rats
20.
Faraday Discuss ; 233(0): 336-353, 2022 04 05.
Article En | MEDLINE | ID: mdl-34935021

Fundamental insight into the extent to which the nanostructured surface and geometry impacts neurochemical interactions at electrode surfaces could provide significant advances in our ability to design and fabricate ultrasensitive neurochemical detection probes. Here, we investigate the extent to which the nanostructure of the carbon-fiber surface impacts detection of catecholamines and purines with fast-scan cyclic voltammetry (FSCV). Carbon-fibers were treated with argon (Ar) plasma to induce variations in the nano- and micro-structure without changing the functionalization of the surface. We tested variations in topology by measuring the extent to which the flow rate, RF power, and treatment time affect the surface roughness. Flow rates from 50-100 sccm, plasma power from 20-100 W, and treatment times from 30 s to 5 min were compared. Two Ar-treatments were chosen from the optimization studies for comparison, and the surface roughness was evaluated using atomic force microscopy (AFM). To ensure no changes in chemical composition, fibers were analyzed with X-ray photoelectron spectroscopy (XPS). On average, at the optimized Ar-plasma treatment procedure, oxidative current for adenosine and ATP increased by 3.5 ± 1.4-fold and 3.2 ± 0.6-fold, and guanosine and GTP by 1.7 ± 0.3-fold and 1.8 ± 0.3-fold, respectively (n = 9). Dopamine increased by 1.7 ± 0.3-fold. The extent to which changes in the electrode structure impact adsorption, sensitivity, and electron transfer rates were measured. A COMSOL Multiphysics simulation was developed to enable the modeling of mass transport of electroactive species at varying electrode geometries. Overall, this study provides critical insight into the extent to which the nanostructure of the surface impacts the electrochemical detection of neurochemicals.


Dopamine , Nanostructures , Carbon Fiber/chemistry , Electrodes , Microscopy, Atomic Force
...